SCoRe(Self-Correction via Reinforcement Learning)是谷歌DeepMind推出的一种创新的多轮强化学习方法,旨在提高大型语言模型(LLM)的自我纠错能力。通过在模型生成的数据上进行训练,使模型在没有外部指导的情况下,对错误答案进行自我纠正。SCoRe的训练包括两个阶段:第一阶段通过适当的正则化约束来初始化模型,避免在训练过程中出现模式崩溃;第二阶段通过奖励机制鼓励模型在第二次尝试中进行有效的自我纠正。实验结果表明,SCoRe在数学问题和编程任务上的自我纠正能力分别提升15.6%和9.1%,优于传统的监督学习方法。SCoRe的成功展示强化学习在提升大模型性能方面的潜力,尤其是在需要高度准确率的应用场景中。

全部评论
留言在赶来的路上...
发表评论