UniFluid 是谷歌 DeepMind 和麻省理工学院联合推出的,统一的自回归框架,用在联合视觉生成和理解任务。基于连续视觉标记处理多模态图像和文本输入,生成离散文本标记和连续图像标记。框架基于预训练的 模型,用配对的图像-文本数据训练,让生成和理解任务相互促进。UniFluid 基于标准的 SentencePiece 作为文本标记器,用连续变分自编码器(VAE)作为图像生成的标记器,结合 SigLIP 图像编码器用在理解任务。基于精心调整训练配方和损失权重平衡,UniFluid 在图像生成和理解任务上均取得与单任务基线相当或更优的结果,展现出强大的下游任务迁移能力,包括图像编辑、视觉描述和问答等。

UniFluid – 谷歌联合麻省理工推出的多模态图像生成与理解框架  第1张
(图片来源网络,侵删)
UniFluid – 谷歌联合麻省理工推出的多模态图像生成与理解框架  第2张
(图片来源网络,侵删)