CogVLM2是由智谱AI推出的新一代多模态大模型,在视觉和语言理解方面实现了显著的性能提升,支持高达8K的文本长度和1344*1344分辨率的图像输入,具备强大的文档图像理解能力。该模型采用50亿参数的视觉编码器与70亿参数的视觉专家模块,通过深度融合策略,优化了视觉与语言模态的交互,确保了在增强视觉理解的同时,语言处理能力也得到保持。CogVLM2的开源版本支持中英文双语,模型大小为19亿参数,但实际推理时激活的参数量约为120亿,展现了在多模态任务中的高效性能。

CogVLM2模型相比前代的改进点主要包括以下几个方面:

CogVLM2开源了两款以Meta-Llama-3-8B-Instruct为语言基座模型的CogVLM2,分别是cogvlm2-llama3-chat-19B和cogvlm2-llama3-chinese-chat-19B,感兴趣的用户可以前往GitHub、Hugging Face或魔搭社区进行下载或在线体验。

CogVLM2 – 智谱AI推出的新一代多模态大模型  第1张
(图片来源网络,侵删)

CogVLM2的模型架构在继承上一代模型的基础上进行了优化和创新,具体特点如下:

CogVLM2的团队在一系列多模态基准上进行了定量评估,这些基准包括 TextVQA、DocVQA、ChartQA、OCRbench、MMMU、MMVet、MMBench等。从下表可以看出CogVLM2 的两个模型,尽管具有较小的模型尺寸,但在多个基准中取得 SOTA性能;而在其他性能上,也能达到与闭源模型(例如GPT-4V、Gemini Pro等)接近的水平。

CogVLM2 – 智谱AI推出的新一代多模态大模型  第2张
(图片来源网络,侵删)