BrushNet是由腾讯PCG部门的ARC实验室与香港大学的研究人员推出的一个基于扩散模型的即插即用的图像照片修复(Inpainting)模型,通过分解的双分支架构来有效处理图像中的遮罩区域。该模型的一个分支专注于提取遮罩图像的像素级特征,而另一个分支则负责图像的生成。这种设计使得BrushNet能够将关键的遮罩信息以分层的方式精细地融入到修复过程中,从而在保持原有图像内容连贯性的同时,生成高质量的修复结果。
与以前的图像修复方法相比(如Blended Latent Diffusion、Stable Diffusion Inpainting、HD-Painter、PowerPaint等),BrushNet的图像还原修复能力无论是在风格、内容,还是颜色和提示对齐等方面都表现出了优越的连贯性。
BrushNet 基于扩散模型通过一个创新的双分支架构来执行图像修复任务。

以下是BrushNet工作原理的简要概述:

全部评论
留言在赶来的路上...
发表评论